Real-Time Straight-Line Detection for XGA-Size Videos by Hough Transform with Parallelized Voting Procedures

نویسندگان

  • Jungang Guan
  • Fengwei An
  • Xiangyu Zhang
  • Lei Chen
  • Hans Jürgen Mattausch
چکیده

The Hough Transform (HT) is a method for extracting straight lines from an edge image. The main limitations of the HT for usage in actual applications are computation time and storage requirements. This paper reports a hardware architecture for HT implementation on a Field Programmable Gate Array (FPGA) with parallelized voting procedure. The 2-dimensional accumulator array, namely the Hough space in parametric form (ρ, θ), for computing the strength of each line by a voting mechanism is mapped on a 1-dimensional array with regular increments of θ. Then, this Hough space is divided into a number of parallel parts. The computation of (ρ, θ) for the edge pixels and the voting procedure for straight-line determination are therefore executable in parallel. In addition, a synchronized initialization for the Hough space further increases the speed of straight-line detection, so that XGA video processing becomes possible. The designed prototype system has been synthesized on a DE4 platform with a Stratix-IV FPGA device. In the application of road-lane detection, the average processing speed of this HT implementation is 5.4ms per XGA-frame at 200 MHz working frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associa...

متن کامل

Development Hough transform to detect straight lines using pre-processing filter

Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...

متن کامل

Development Hough transform to detect straight lines using pre-processing filter

Image recognition is one of the most important field in image processing that in recent decades had much attention .Due to expansion of related fields with image processing and various application of this science in machine vision, military science, geography, aerospace and artificial intelligence and lots of other aspects, out stand the importance of this subject.One of the most important aspe...

متن کامل

A neural implementation of the Hough transform and the advantages of explaining away

The Hough transform (HT) is widely used for feature extraction and object detection. However, during the HT individual image elements vote for many possible parameter values. This results in a dense accumulator array and problems identifying the parameter values that correspond to image features. This article proposes a new method for implementing the voting process in the HT. This method emplo...

متن کامل

Guaranteed Convergence of the Hough Transform

The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the collinearity detection problem to a problem of nding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using xed scale M-estimation. Unlike standard M-estimation procedures the Hough T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017